was selectively converted into the allylic alcohol **19** (88%) via the 2,3-sigmatropic shift of a selenoxide with bonding to the more accessible alkene β -face. Finally, MCPBA oxidation (77%) and thermal sulfoxide elimination (135 °C, xylene, CaCO₃ buffer) gave *d*,*l*-zygosporin E (52% isolated), identical with natural material according to spectroscopic and chromatographic data.^{10,11} None of the isomeric (Z)-olefin was detected.¹² The same sequence of steps from **16** produced *d*,*l*-16-*epi*-zygosporin E, **20**, 70% yield for sulfoxide pyrolysis and 44% overall from **16**.¹¹

The synthesis of zygosporin E illustrates the use of sulfide bridge stereochemistry as a relay for stereochemical information in medium-sized rings. High selectivity at eight of the nine asymmetric centers in 1 has been achieved. More important, the synthesis demonstrates that remote stereocontrol in a complex macrocycle is not restricted to the coupling of optically pure subunits.^{5c,13}

Acknowledgment. This work was supported by the National Institutes of Health (CA 17918).

Registry No. 1, 114651-74-0; 4, 90741-78-9; 5, 114634-51-4; 6, 114634-52-5; 7, 114634-53-6; 8, 114634-54-7; 11, 114634-55-8; 12, 114634-56-9; 13, 114634-57-0; 14, 114634-58-1; 15, 114651-83-1; 16, 114651-84-2; 18, 114634-61-6; 19, 114634-62-7; 20, 114634-63-8; PhSeSe⁺(CH₃)PhBFu⁻, 114634-60-5.

Supplementary Material Available: Analytical and spectral data for compounds 5-8, 11-16, 18-20, and 1 (6 pages). Ordering information is given on any current masthead page.

(10) We are grateful to Dr. H. Minato for a comparison sample of natural zygosporin E.

(11) Characterization data for key intermediates, see: Supplementary Material.

(12) A byproduct tentatively identified as the enol acetate resulting from the other regiochemistry of sulfoxide elimination was also formed.

(13) Recent examples: Still, W. C.; Novack, V. J. J. Am. Chem. Soc.
1984, 106, 1148. Still, W. C.; Romero, A. G. J. Am. Chem. Soc. 1986, 108, 2105. Schreiber, S. L.; Sammakia, T.; Hulin, B.; Schulte, G. J. Am. Chem. Soc. 1986, 108, 2106. Vedejs, E.; Buchanan, R. A.; Conrad, P.; Meier, G. P.; Mullins, M. J.; Watanabe, Y. J. Am. Chem. Soc. 1987, 109, 5878.

Highly Efficient Synthesis of Carbacyclin Analogue. Stereospecific Synthesis of Aryl-Substituted Exocyclic Olefin¹

Mikiko Sodeoka, Shoji Satoh, and Masakatsu Shibasaki*

Faculty of Pharmaceutical Sciences Hokkaido University, Sapporo 060, Japan Received February 16, 1988

Although exocyclic olefins are now readily available in a stereocontrolled manner,² the stereospecific synthesis of aryl-substituted exocyclic olefins³ still remains a challenging problem in organic synthesis.⁴ A few years ago, on the basis of molecular design, we took an interest in the synthesis of the carbacyclin analogue with an aryl-substituted exocyclic olefin **13**. In this

(4) Pd-catalyzed vinyl/aryl coupling might be one of the most promising methods for the stereospecific synthesis of aryl-substituted exocyclic olefins. However, unfortunately, no method for the stereospecific synthesis of exocyclic vinyl halides is available now. Scheme I^a

^a(a) TBDMSO // SO₂tol, *n*-BuLi, THF, -52 °C, then Ac₂O; (b) Na-Hg (5%), NaH₂PO₄, MeOH; (c) (naphthalene)Cr(CO)₃, acetone, 19 °C; (d) MnO₂, molecular sieves 4Å, benzene, reflux.

communications we wish to report a stereospecific synthesis of the various simple molecules 18, 19, 20, 21, 24, and 25 as well as a highly stereoselective synthesis of 13.

In the synthesis of carbacyclin by (methyl benzoate) $Cr(CO)_3$ catalyzed 1,4-hydrogenation reaction, we had already detected the stereo- and regiocontrolled 1,5-hydrogen shift of the conjugated diene, which proceeds at 130 °C via the U-shaped η^5 -pentadienyl hydride intermediate with 18-electron configuration.^{5,6} Furthermore, very recently, we found that this isomerization reaction proceeds smoothly even at 20 °C by the use of (naphthalene)- $Cr(CO)_3$ as a catalyst. On the basis of the argument described above, it was envisioned that both of (Z)-2 and (E)-2 would be converted to 8 stereospecifically by $(naphthalene)Cr(CO)_3$ catalyzed isomerization followed by aromatization. Thus a mixture of (Z)-2 and (E)-2 was first synthesized from the enal 1, obtainable from the Corey lactone in a stereo- and regiocontrolled manner (ca. 70% overall yield),⁷ via a three-step sequence of reactions (73%, (Z)-2:(E)-2 = ca. 1:1). It was expected that (Z)-2 would be isomerized to the most stable 4 in a stereo- and regiocontrolled manner through the U-shaped η^5 -intermediate 3 generated by abstraction of the hydrogen Ha. Likewise, (E)-2 was anticipated to be first isomerized to 6 through 5 formed by abstraction of the hydrogen Hb. We further expected that 6 would be isomerized to 4, because it is known that cyclic 1,4-dienes are converted to 1,3-dienes by (arene)Cr(CO)₃ complexes.⁸ Namely, regardless

Dedicated to Professor E. J. Corey on the occasion of his 60th birthday.
 (a) Shibasaki, M.; Sodeoka, M.; Ogawa, Y. J. Org. Chem. 1984, 49, 4096.
 Overman, L. E. In Lett. Heterocycl. Chem. 1985, 8, 59.
 (c) Corey, E. J.; Seibel, W. L. Tetrahedron Lett. 1986, 27, 905.
 (d) Hutchinson, D. K.; Fuchs, P. L. J. Am. Chem. Soc. 1987, 109, 4755.
 (e) Negishi, E. Acc. Chem. Res. 1987, 20, 65.
 (f) Liebeskind, L. S.; Mitchell, D.; Foster, B. S. J. Am. Chem. Soc. 1987, 109, 7908.

⁽³⁾ For interesting compounds having an aryl-substituted exocyclic olefin, see: (a) Mason, C. P.; Edwards, K. R.; Carlson, R. E.; Pignatello, J.; Gleason, F. K.; Wood, J. M. Science (Washington, D. C.) 1982, 215, 400. (b) Flohé, L.; Böhlke, H.; Frankus, E.; Kim, S.-M. A.; Lintz, W.; Loschen, G.; Michel, G.; Müller, B.; Schneider, J.; Seipp, U.; Vellenberg, W.; Wilsmann, K. Arzneim-Forsh./Drug Res. 33 1983, (II) Nr. 9. (c) Noyori, R.; Ohta, M.; Hsiao, Yi; Kitamura, M.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. 1986, 108, 7117. (4) Pd-catalyzed vinyl/aryl coupling might be one of the most promising methods for the tergespecifie of synthesis of aryl experimentation.

^{(5) (}a) See: ref 2a. (b) Tucker, J. R.; Riley, D. P. J. Organomet. Chem. 1985, 275, 49.

⁽⁶⁾ The 1,5-hydrogen shift of conjugated dienes catalyzed by (arene)Cr-(CO)₃ complexes was already known. However, the stereochemistry of the reaction had been clarified by us,^{2a} indicating that perfect formation of Ushaped η^5 -pentadienyl hydride intermediates makes the complete stereochemical control of isomerized products possible. (7) Sodeoka, M.; Shibasaki, M. Chem. Lett. **1984**, 579 (now commercially

⁽⁷⁾ Sodeoka, M.; Shibasaki, M. Chem. Lett. 1984, 579 (now commercially available from Nissan Chemical Industries, Ltd, Japan).

Scheme II^a

-so_{2tol}, n-BuLi, THF, -50 °C, then Ac₂O; "(a) TEDMSO-

(b) Na-Hg (5%), NaH_2PO_4 , MeOH; (c) (naphthalene)Cr(CO)₃, acetone, 19 °C; (d) MnO₂, molecular sieves 4Å, benzene reflux; (e) n-Bu₄NF, THF, room temperature.

Scheme III

of the stereochemistry of the starting triene 2, only 4 was expected to be formed stereospecifically (Scheme I).

As expected, treatment of 2 (E:Z = ca. 1:1) with (naphthalene)Cr(CO)₃ (20 mol %) in acetone at 19 °C for 22 h (argon atmosphere) afforded a mixture of 4 and 6 in a ratio of 8:1 (100%), which was then converted to $\mathbf{8}$ (E) in 87% yield as a single product by reaction with activated MnO_2 . The Z-isomer was also prepared from 8 by photochemical technique. In comparison of 8 with the Z-isomer, the stereospecificity of the present reaction was unequivocally confirmed. 8 should be the versatile key intermediate for 13 and the related compounds.9.11

The methodology described above was further applied to 10 having the ω -chain. The enal 9¹⁰ was transformed into 10 (79%, E:Z = ca. 1:1). Treatment of 10 with (naphthalene)Cr(CO)₃ (20) mol %) in acetone at 18-20 °C for 2 h gave a mixture of the isomerized products 11, which underwent aromatization to give 12 stereospecifically (58% overall yield from 10). The stereospecificity was confirmed by the same technique as described above. 12 was converted to 13^{11} (89%) by treatment with fluoride anion (Scheme II).

Finally it was found that the six-membered ring compounds with an aryl-substituted exocyclic olefin 18 (73%), 19 (76%), 20 (79%), 21 (73%), 24 (73%), and 25 (88%) could be also obtained stereospecifically from the corresponding partially conjugated trienes 14, 15, 16, 17, 22, and 23 (in every case, E:Z = ca. 1:1), demonstrating the generality of the present methodology (Scheme III).

In conclusion, we have developed the conceptually new method for the stereospecific synthesis of aryl-substituted exocyclic olefins by utilizing the room temperature 1,5-hydrogen shift of conjugated dienes catalyzed by (naphthalene)Cr(CO)₃ complex. Further studies are in progress.

Supplementary Material Available: Experimental data for 1-8, spectral data for 18 and 24, and synthetic routes to 14, 15, 16, 17, 22, and 23 (5 pages). Ordering information is given on any current masthead page.

Diastereoselective Photodeconjugation of α,β -Unsaturated Esters

Reza Mortezaei, Djamsah Awandi, Françoise Henin, Jacques Muzart,*,1 and Jean-Pierre Pete*

Laboratoire de Photochimie Unitē Associée au CNRS, nº 459 Université de Reims Champagne-Ardenne, 51062 Reims Cédex, France Received November 23, 1987

Ultraviolet light irradiation of aliphatic α,β -unsaturated esters having one hydrogen atom in the γ -position led to the corresponding deconjugated esters through a dienol intermediate.^{2,3} This reaction was sufficiently general to be proposed as a synthetic procedure for the preparation of β , γ -unsaturated esters.⁴ If the starting material bears one α -alkyl substituent, the dienol intermediate is prochiral, and we have shown precedently that enantioselective protonation of the α -carbon could be observed in an aprotic solvent containing small amounts of chiral aminoalcohols.⁵ Thus, optically active β , γ -unsaturated esters were obtained through an asymmetric bimolecular reaction. A model involving a cyclic transition state was proposed to explain the chiral discrimination.5b

Photochemical studies of an intramolecular asymmetric induction in solution have been mainly restricted to photocycloadditions.^{6,7} Thus, we chose to determine the importance of an

P. Tetrahedron Lett. 1986, 27, 2997. (c) Piva, O.; Henin, F.; Muzart, J.; Pete, J. P. Tetrahedron Lett. 1986, 27, 3001; 1987, 28, 4825

(6) For reviews, see: (a) Kagan, H. B.; Fiaud, J. C. In Topics in Stereo-chemistry, Eliel, E. L., Allinger, N. C., Eds.; Wiley: 1977; Vol. 10, p 175. (b) Rau, H. Chem. Rev. 1983, 83, 535. (c) Griesbeck, A. G. E.P.A. News 1986, 28, 13.

1986, 28, 15.
(7) For asymmetric photocycloadditions, see: (a) Nehrings, A.; Sharf, H. D.; Runsink, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 877. (b) Koch, H.; Scharf, H. D.; Runsink, J.; Leismann, H. Chem. Ber. 1985, 118, 1485. (c) Herzog, H.; Koch, H.; Scharf, H. D.; Runsink, J. Tetrahedron 1986, 42, 3547. (d) Lange, G. L.; Decicco, C.; Tan, S. L.; Chamberlain, G. Tetrahedron List, 1985, 26, 4707. (e) Tolbert, L. M.; Ali, M. B. J. Am. Chem. Soc. 1985, 107, 4589. (f) Lange, G. L.; Lee, M. Tetrahedron Lett. 1985, 26, 6163. (g) Meyers, A. I.; Fleming, S. A. J. Am. Chem. Soc. 1986, 108, 306. (h) Demuth, M.; Palomer, A.; Sluma, H. D.; Dey, A. K.; Krüger, C.; Tsay, Y. H. Angew. Chem., Int. Ed. Engl. 1986, 25, 1117. (i) Okado, K.; Samizo, F.; Oda, M. Chem., Int. Ed. Engl. 1986, 25, 1117. (i) Okado, K.; Samizo, F.; Oda, M. Tetrahedron Lett. 1987, 28, 3819. For other uses, see: (j) Schultz, A.; Kulkarni, Y. J. Org. Chem. 1984, 49, 5202. (k) Sudhakar, A.; Katz, T. J. J. Am. Chem. Soc. 1986, 108, 179. (l) Crich, D.; Davies, J. W. Tetrahedron Lett. 1987, 28, 4205. (m) Okada, K.; Sakai, H.; Oda, M.; Yoshimura, A.; Ohno, T. J. Am. Chem. Soc. 1987, 109, 5534.

⁽⁸⁾ Frankel, E. N. J. Catal. 1972, 24, 358.

⁽⁹⁾ For selective deprotection of alcoholic and phenolic silyl ethers, see: Collington, E. W.; Finch, H.; Smith, I. J. Tetrahedron Lett. 1985, 26, 681. (10) Mase, T.; Sodeoka, M.; Shibasaki, M. Tetrahedron Lett. 1984, 25

^{5087 (}now commercially available from Nissan Chemical Industries, Ltd, Japan) (11) Biological activities of 13 and the related compounds will be reported

in due course.

⁽¹⁾ As a former Corey's research group member, J.M. dedicates this paper in a tribute to E. J. Corey on the occasion of his 60th birthday.

 ^{(2) (}a) Jorgenson, M. J. Chem. Commun. 1965, 137. Jorgenson, M. J. J.
 Am. Chem. Soc. 1969, 91, 198. (b) Barltrop, J. A.; Wills, J. Tetrahedron Lett.
 1968, 4987. (c) Jorgenson, M. J.; Gundel, L. Tetrahedron Lett. 1968, 4991.
 (d) Itoh, M.; Tokuda, M.; Kihara, K.; Suzuki, A. Tetrahedron 1968, 24, 6591. (e) Itoh, M.; Tokuda, M.; Seguchi, K.; Taniguchi, K.; Suzuki, A. Kogyo Kagaku Zasshi 1969, 72, 219.

<sup>Kagaku Zasshi 1969, 72, 219.
(3) (a) Skinner, I. A.; Weedon, A. C. Tetrahedron Lett. 1983, 24, 4299.
(b) Weedon, A. C. Can. J. Chem. 1984, 62, 1933. (c) Duhaime, R. M.;</sup> Lombardo, D. A.; Skinner, I. A.; Weedon, A. C. J. Org. Chem. 1985, 50, 873.
(d) Marjerrison, M.; Weedon, A. C. J. Photochem. 1986, 33, 113.
(4) (a) Kropp, P. J.; Krauss, H. J. J. Org. Chem. 1967, 32, 3222. (b) Rando, R. R.; Doering, W. E. J. Org. Chem. 1968, 33, 1671. (c) Lombardo, D. A.; Weedon, A. C. Tetrahedron Lett. 1986, 27, 5555.
(5) (a) Mortezaei, R.; Henin, F.; Muzart, J.; Pete, J. P. Tetrahedron Lett. 1985, 26, 6079. (b) Mortezaei, R.; Piva, O.; Henin, F.; Muzart, J.; Pete, J.